University of Illinois researchers make walking 'bio-bots' from heart cells and hydrogels

bio-bot (nature)

Move over, robots. Researchers at the University of Illinois are working on a different kind of miniaturized locomotive walking machines, ones made from hydrogels and neonatal rat heart cells; what the team affectionately refers to as "bio-bots." According to a new article in Nature, the scientists used lasers to carve a 3D print in a photosensitive pre-polymer solution, laying down the 2mm by 4mm bots’ scaffolding, then added a sheet of spontaneously-contracting heart cells. The result is that twice every three seconds a muscular sheet pumps the bot's cantilevered "actuator leg," pushing it around like a tiny skateboarder (video) through a liquid medium. After experimenting with a few different designs, the team managed to reach a top speed of 236 micrometers per second — about twice the width of an average human hair.

Forward-engineered from scratch

Unlike you might expect, the bots were forward-engineered from scratch. Rather than model them on structures and mechanisms found in nature, the scientists engineered their own solution "with desired geometry, mechanics, and cell adhesion molecules for optimal and robust locomotion." Thankfully, there’s no need to worry about being overrun by swarms of tiny meat-bots at this early stage. Setting aside the fact that the bots are only viable in a liquid medium, the scientists say that the cells only perform optimally for three to five days before the muscle loses its contractive force. So unless you're within 100 yards or so of ground zero, you're pretty much safe.

One of many practical applications for the bio-bots could be using them to track down chemical toxins and release a neutralizing agent. The team admits that a lot of work would need to be done for something like this to be possible (the bots would need to be smart), but in the long run it thinks the technology could transform areas like biosensing, drug delivery, energy production, environmental remediation, and the development of artificial immune systems.

The Verge
Log In Sign Up

Log In Sign Up

Please choose a new Verge username and password

As part of the new Verge launch, prior users will need to choose a permanent username, along with a new password.

Your username will be used to login to Verge going forward.

I already have a Vox Media account!

Verify Vox Media account

Please login to your Vox Media account. This account will be linked to your previously existing Eater account.

Please choose a new Verge username and password

As part of the new Verge launch, prior MT authors will need to choose a new username and password.

Your username will be used to login to Verge going forward.

Forgot password?

We'll email you a reset link.

If you signed up using a 3rd party account like Facebook or Twitter, please login with it instead.

Forgot password?

Try another email?

Almost done,

By becoming a registered user, you are also agreeing to our Terms and confirming that you have read our Privacy Policy.



Choose an available username to complete sign up.

In order to provide our users with a better overall experience, we ask for more information from Facebook when using it to login so that we can learn more about our audience and provide you with the best possible experience. We do not store specific user data and the sharing of it is not required to login with Facebook.